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Abstract 37	
  

 Ensemble-based parameter estimation for a climate model is emerging as an 38	
  

important topic in climate research. For a complex system as a coupled ocean-atmosphere 39	
  

general circulation model, the sensitivity and response of a model variable to a model 40	
  

parameter could vary spatially and temporally. Here, we propose an adaptive spatial 41	
  

average (ASA) algorithm to increase the efficiency of parameter estimation.  Refined 42	
  

from a previous spatial average method, the ASA uses the ensemble spread as the 43	
  

criterion for selecting “good” values from the spatially varying posterior estimated 44	
  

parameter values; the “good” values are then averaged to give the final global uniform 45	
  

posterior parameter. In comparison with existing methods, the ASA parameter estimation 46	
  

has a superior performance: faster convergence and enhanced signal-to-noise ratio.  47	
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1 Introduction 59	
  

Parameter estimation using ensemble-based filter (Anderson, 2001) is emerging 60	
  

as a promising approach to optimize parameters in a complex model (Annan and 61	
  

Hargreaves, 2004; Hacker and Snyder, 2005; Annan et al., 2005 a & b; Ridgwall et al., 62	
  

2007; Hacker and Snyder, 2005; Aksoy et al., 2006 a & b; Tong and Xue 2008 a & b; 63	
  

Nielsen-Gammon, 2010; Hu et al., 2010; Zhang el al, 2012; Zhang, 2011 a & b; Wu et 64	
  

al., 2012 a & b; Liu et al. 2014). In parameter estimation in a complex system, such as a 65	
  

coupled ocean-atmosphere general circulation model (CGCM), one common issue is 66	
  

sampling error accumulation when a large number of observations are used to update a 67	
  

single-value parameter sequentially (Aksoy et al, 2006a). To address this issue, Aksoy et 68	
  

al (2006a) proposed a spatial updating technique that transforms a single-value parameter 69	
  

into a two–dimensional field and updates the field spatially, so that localization in 70	
  

filtering can limits the observational error accumulation. The final model parameter after 71	
  

each analysis has been derived in two methods. In the first method, the globally uniform 72	
  

parameter value is recovered using a spatial average of the entire spatially varying 73	
  

parameter field (demoted as SA, Aksoy et al, 2006a & b). In the second method, the 74	
  

spatially varying parameters are allowed to vary spatially after each analysis, in the so-75	
  

called Geographically-dependent Parameter Optimization (denoted as GPO, see Wu et 76	
  

al., 2012a). 77	
  

Here, our objective is the recovery of the spatially uniform parameter value. We 78	
  

propose an average method called adaptive spatial average method (ASA). The ASA is 79	
  

refined from the SA method to increase the efficiency of parameter estimation. The ASA 80	
  

uses the ensemble spread as the criterion for selecting “good” parameter values from the 81	
  

spatially varying parameter estimation; these “good” values are then averaged to give the 82	
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final posterior parameter.  Liu et al. (2014) has recently shown some examples of 83	
  

successful ASA estimation in a CGCM. In this paper, we will examine in detail the ASA 84	
  

methodology for parameter estimation in a CGCM using ensemble-based filter. The e-85	
  

folding solar penetration depth (SPD) is used as the major parameter for estimation in this 86	
  

study. We will show that, compared with the SA method and the GPO method, our 87	
  

proposed ASA produces a faster convergence rate for parameter estimation. The paper is 88	
  

organized as follows.  Section 2 briefly describes the parameter estimation scheme and 89	
  

the CGCM used in this study. Section 3 shows the model sensitivity to the parameter 90	
  

(SPD). Section 4 discusses the ASA method. The ASA method is compared with GOP 91	
  

method and SA method in section 5. A summary and further discussion are given in 92	
  

section 6. 93	
  

2 Model and Method 94	
  

(a) Fast Ocean Atmosphere Model (FOAM) 95	
  

Our model, the Fast Ocean Atmosphere Model (FOAM, Jacob, 1997) is a CGCM 96	
  

with an atmospheric component of  a R15 (7.5o longitude, 4o latitude and 18 layers). The 97	
  

ocean component is a z-coordinate model with a resolution of 2.8o longitude, 1.4o latitude 98	
  

and 24 layers. Without flux adjustment, the fully coupled model has been run for over 99	
  

6000 years with no apparent drift in tropical climate (Liu et al., 2007a). In spite of its low 100	
  

resolution, FOAM has a reasonable tropical climatology (Liu et al., 2003), ENSO 101	
  

variability (Liu et al., 2000), and Pacific decadal variability (Wu et al., 2003, Liu et al., 102	
  

2007b). 103	
  

(b) Data Assimilation Scheme  104	
  

We will use a particular EnKF scheme, the Ensemble adjustment filter (EAKF, 105	
  

Anderson, 2001, 2003) in this study. Model parameters will be estimated simultaneously 106	
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with the state variables by augmenting state variables with model parameters (Banks, 107	
  

1992a, b; Anderson, 2001).  108	
  

The e-folding solar penetration depth (SPD) is used as the major testing parameter 109	
  

for estimation. Solar attenuation in the ocean is a function of the amount of biomass in 110	
  

the upper layers of the ocean (Smith and Baker, 1978; Ohlmann et al., 2000). Previous 111	
  

studies suggest that solar penetration can have a significant impact on the surface climate 112	
  

in a climate model (Schneider and Zhu, 1998; Nakamoto et al., 2001; Murtugudde et al., 113	
  

2002; Ballabrera-Poy et al., 2007; Anderson et al. 2007). In particular, some modeling 114	
  

studies found that a deeper solar attenuation leads to warming in the tropical Pacific 115	
  

annual mean SST, which may then reduce the cold bias in the equatorial Pacific in a 116	
  

coupled ocean-atmosphere model (Murtugudde et al., 2002; Ballabrera-Poy et al., 2007; 117	
  

Anderson et al. 2007).  118	
  

Following Murtugudde et al. (2002), the downward solar radiation 𝐼 𝑧 , at depth 119	
  

of z in FOAM is calculated as  120	
  

𝐼 𝑧 = 𝐼 0 𝛾𝑒(!
!
!)          (1) 121	
  

where 𝐼 0  is the total incident solar radiation at sea surface and γ=0.47 (Frouin et al., 122	
  

1989) represents the fraction of total solar radiation in the photosynthetically available 123	
  

radiation band (wavelengths from 380 to 700nm). The remaining fraction of solar 124	
  

radiance is fully absorbed in the top model layer of 20 meters. The ℎ is the e-folding 125	
  

depth of the solar penetration depth (SPD), which will be estimated in our experiments. 126	
  

In the real world, the SPD can be treated as a state variable, too, because it can be 127	
  

calibrated using the remote sensing observation of ocean color. Here, however, it is 128	
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treated as a model parameter that will be estimated using conventional observation of sea 129	
  

surface temperature (SST) and salinity (SSS).   130	
  

 In this paper, we assume the “truth” SPD has a globally uniform value of 17-m, 131	
  

and the truth simulation is performed with this SPD.  The first guess of SPD is assumed 132	
  

20-m with an uncertainty of 3-m (standard deviation). The observation for the 133	
  

assimilations are the monthly mean SST and SSS, which are generated by adding a 134	
  

Gaussian white noise to the corresponding “truth” states at each grid point. The 135	
  

observational error scales (standard deviation) are 1oK for SST and 1psu for SSS. An 136	
  

ensemble size of 30 is used in all of our experiments. A 30-year simulation from the 137	
  

control truth run is used for the initialization of the ensemble, with the restart file of 138	
  

January 1st of each year used as the initial condition for each ensemble member. For state 139	
  

variable, the upper 8 layers of ocean temperature and salinity (0~235m) are updated by 140	
  

the observations. The Gaspari and Cohn (1999) covariance localization is used with the 141	
  

influence radius of 3 grid points horizontally for both state variables and the parameter 142	
  

SPD. To extract signal-dominant state-parameter covariance, the enhancive parameter 143	
  

correction is applied (DAEPC, Zhang et al., 2012). Before the parameter estimation is 144	
  

activated, the data assimilation is performed in a “spin-up” period of 2 years in which 145	
  

only the state variables are estimated.  146	
  

3 Model sensitivity with respect to solar penetration depth 147	
  

We first investigate the model sensitivity to the parameter, solar penetration depth 148	
  

(SPD). Two types of parameter sensitivities need to be considered when DAEPC is used 149	
  

to improve the model climate. The first type is the sensitivity of the response of the 150	
  

model climatology to the change of the parameter; this sensitivity shows if the final 151	
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model climate can be improved by tuning this specific parameter. The ocean surface 152	
  

climates of FOAM are significantly different between a deeper SPD (20-m) simulation 153	
  

and a shallow SPD (17-m) one, characterized by a warming of up to over 0.5oK in the 154	
  

tropical ocean and a cooling of up to -0.5oK in the subtropical ocean (see figure 1 in Liu 155	
  

et al. 2013). 156	
  

The second type of sensitivity tests the model’s sensitivity to parameter 157	
  

uncertainty (represented, say, by the ensemble spread of the parameter) in the 158	
  

observational space at the observational time interval; this sensitivity examines the 159	
  

possibility of reducing parameter uncertainty using the observations available. 160	
  

Furthermore, the model response to parameter uncertainty consists of linear and non-161	
  

linear parts. Since the Kalman Filter framework is derived as the optimal analysis for a 162	
  

linear system, some features involving non-linear dependence may be regarded as noise 163	
  

for parameter estimation. Successful parameter estimation requires a signal-dominant 164	
  

state-parameter covariance, which is derived most favorably in a model whose state 165	
  

variables exhibit a strong linear dependence on model parameters (Aksoy et al., 2006 a, 166	
  

b).  167	
  

 An ensemble simulation starting from the same initial condition but using 168	
  

different values of the parameter SPD (i.e. an perturbed ensemble of parameters) 169	
  

demonstrates the second type of sensitivity (Fig. 1). (Here, the parameter ensemble is 170	
  

constructed as a Gaussian distribution with the mean of 20-m and the standard deviation 171	
  

of 3-m). Since we will use the observations of monthly SST for parameter estimation, we 172	
  

will examine the ensemble response of the first month SST. The ensemble spread of the 173	
  

first month SST (monthly mean) represents the response of the model SST to the 174	
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uncertainty of SPD in the observational space; the correlation coefficient between the 175	
  

SPD ensemble and the first month SST quantifies the linear part of the response. Fig.1 176	
  

shows an overwhelmingly negative correlation between SST and SPD, implying 177	
  

predominantly a colder SST with a deeper SPD. This cooling is likely to be caused by the 178	
  

direct effect of solar penetration. Physically, a deeper SPD allows more solar radiation to 179	
  

penetrate below the surface layer, leaving less shortwave radiation heating the surface 180	
  

layer, and therefore cause surface cooling. The direct effect of solar penetration is 181	
  

dominant in the initial months in response to a sudden change of the SPD (Hokanson, 182	
  

2006). One striking feature of the sensitivity is the strong variation with season and 183	
  

location. The SST ensemble spread is large and exhibits negative correlations in the 184	
  

summer hemisphere where the mixed layer is shallow and therefore the SST is more 185	
  

sensitive to heat flux perturbations. Fig.1 is important for our parameter estimation, 186	
  

because it indicates the key regions for parameter estimation. The regions with large 187	
  

sensitivity and high correlation represent the regions of large linear model response to 188	
  

SPD. These regions have high signal/noise ratio and therefore are the regions where the 189	
  

observation of SST are most effective for parameter estimation. The rest of regions, 190	
  

which account for more than half of the grid points at each analysis step, are unlikely to 191	
  

provide significant information for parameter estimation.  192	
  

4 The Adaptive Spatial Average scheme (ASA)  193	
  

The sensitivity experiments in section 3 show that the model response to the 194	
  

parameter SPD varies significantly in both space and time. We speculate that neither 195	
  

GPO nor SA is most efficient for estimating the parameter. This follows that only the 196	
  

regions with large model-to-parameter linear response can provide state-parameter 197	
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covariance with high signal/noise ratio for parameter estimation. Fig.3 implies that the 198	
  

state-parameter covariance is insignificant over about half of the grid points at a time and 199	
  

in about half of the year at a given grid point.  Therefore, for the purpose of parameter 200	
  

estimation, the estimations are not useful for more than half of the time at a given grid, 201	
  

and the estimations are not useful for more than half of the grids in the basin for a given 202	
  

observation time. Therefore, both SA and GPO are not the most efficient methods to 203	
  

estimate the parameter SPD, as will be shown below.  204	
  

Here we refine the SA method to the Adaptive Spatial Average (ASA) method, to 205	
  

increase the efficiency of parameter estimation. In SA, the final spatially uniform 206	
  

parameter is estimated as the average of all the spatially different posteriors, each derived 207	
  

at a grid point using localization. The ASA is based on the idea that a parameter 208	
  

estimation, which will be derived from an average of spatially different posteriors, should 209	
  

be more accurate if it only includes average those posteriors of smaller uncertainties (i.e. 210	
  

errors). For practical applications where the truth parameter, and therefore, the parameter 211	
  

error, is unknown, we can consider the ensemble spread as a representation of the error, 212	
  

as in traditional application of ensemble filtering to state variables (e.g. Evensen, 2007). 213	
  

(We will return to this point later).  Therefore, the ensemble spread can be considered as 214	
  

the indicator of the quality of each posterior parameter values and a higher quality 215	
  

posterior has a smaller ensemble spread. The ASA will only retain those high quality 216	
  

values for the final averaging to derive the value for the spatially uniform parameter.  217	
  

This average value of high quality values should have smaller error than the average 218	
  

value of averaging all the values as in SA, which include the high quality as well as low 219	
  

quality values. A preliminary theoretical analysis of this point is given in the appendix.  220	
  



	
   10	
  

A posterior value is “good” if its ensemble spread is relatively small among all the 221	
  

posteriors estimated at all the grid points. In practice, we use a threshold of the spread 222	
  

ratio between the posterior and the prior to judge the quality of the posterior and a 223	
  

posterior with a spread ratio below the threshold is considered a “good” posterior to be 224	
  

included for the final spatial average. (It should be noted that the ensemble spread of the 225	
  

prior is spatially uniform over the globe. Therefore, this spread ratio of the posterior over 226	
  

prior does not affect the relative magnitude of the posterior.) The speed of the decrease of 227	
  

the parameter uncertainty depends greatly on the magnitude of the signal. Initially, the 228	
  

ASA can use a small ratio as the threshold because the initial parameter uncertainty is 229	
  

large and the response magnitude (signal) is large. The threshold will be increased during 230	
  

the simulation with the decrease of the parameter uncertainty. The ASA is applied every 231	
  

few EnKF analysis cycles to obtain sufficient numbers of “good” parameter posterior 232	
  

values. The ASA therefore differs from the SA of Aksoy et al (2006a), in which the 233	
  

spatial average is performed every EnKF analysis cycle and on all grid points. A 234	
  

conditional covariance inflation technique (CCI) as in Aksoy et al. (2006b) is also 235	
  

employed here on parameter ensemble after each ASA step to avoid the filter divergence 236	
  

for parameter estimation. The CCI inflates the parameter ensemble back to a predefined 237	
  

minimum value when necessary. The predefined minimum value is also the final 238	
  

uncertainty target for the estimated parameter.  239	
  

 240	
  

5 Comparison of ASA with GPO and SA 241	
  

  We now compare ASA with SA and GPO schemes in FOAM. Two sets of 242	
  

experiments of parameter estimation are performed using observations of monthly SST 243	
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and SST at every grid point. The first set of experiments (EXP-1a and EXP-1b) use the 244	
  

GOP scheme and confirm that the parameter ensemble spread is a good index for the 245	
  

parameter uncertainty (Figs. 2, 3). The second sets of experiments (EXP-2a and EXP-2b, 246	
  

Figs. 4, 5) compare the parameter estimations between SA and ASA schemes. The details 247	
  

of experimental setting are shown in table 1. 248	
  

(a) The assimilations with GPO scheme 249	
  

 Both EXP-1a and EXP-1b use the GPO scheme but with different observations. 250	
  

EXP-1b uses regular observations that consist of the “truth” plus noise. EXP-1a, called 251	
  

perfect observation experiment, uses the “truth” from control as the observations but 252	
  

nevertheless treats it as having the same uncertainty scale as in EXP-1b. For these two 253	
  

GPO experiments, neither EXP-1a nor EXP-1b is able to produce good parameter 254	
  

estimation, if only the monthly SST and SSS data are assimilated. Therefore, we are 255	
  

forced to also assimilate daily atmosphere wind (U, V) and temperature (T) with the error 256	
  

scale of 1 m/s and 1K, respectively; the observational error scales for SST and SSS are 257	
  

also forced to be reduced from 1oK and 1 psu to 0.5oK and 0.5 psu, respectively. The 258	
  

initial SPD error is also reduced from 3-m to 1-m. 259	
  

 As speculated, the spatial pattern of the RMSE of SPD in EXP-1a is very 260	
  

consistent with the ensemble spread after 20 years of simulation (Figs. 2a, b). There are 261	
  

some regions of low uncertainty of SPD in different ocean basins.  A further study shows 262	
  

that the low uncertainty in the mid-latitude North Pacific and North Atlantic are related to 263	
  

the large model sensitivity to SPD during the boreal summer (Fig1b) and fall (Fig1c); the 264	
  

low uncertainty in the eastern South Pacific, western equatorial Pacific, South Atlantic 265	
  

and southern Indian Ocean are partly related to the large sensitivity of the model SST to 266	
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SPD in the austral fall (Fig.1a) and summer (Fig.1d). The high positive correlation 267	
  

between the parameter uncertainty and its ensemble spread can be seen more clearly in 268	
  

the scatter plot, for example, at the simulation year of 40 (Fig3a).   The RMSE of SPD 269	
  

estimation and its ensemble spread show a strong positive linear correlation with only 270	
  

modest spread residual.  The estimate values are closer to the truth when the ensemble 271	
  

spread is small, except for the case of very small ensemble spread (<~ 0.3 in Fig.3a). The 272	
  

positive correlation between the posterior error and ensemble spread supports our 273	
  

speculation before that the ensemble spread can be used to represent the estimation error 274	
  

or uncertainty. Furthermore, it is clear that a spatial average will decrease the parameter 275	
  

error because the average reduces the part of parameter uncertainty that is spatially 276	
  

independent (see eqn. (A4 in the appendix). The error of SPD can be further reduced by 277	
  

using only the posterior values with smaller ensemble spread for average (Fig3b), as 278	
  

hypothesized for the ASA. The error of SPD is reduced to 0.40-m when the posterior 279	
  

values of SPD over all the global grid points are averaged in EXP-1a (after 40 years of 280	
  

assimilation), compared with the global mean RMSE of SPD of 0.6-m (first RMSE and 281	
  

then global average); this error is decreased to 0.2-m and 0.1-m when the top 50% and 282	
  

20% of grid points of smallest ensemble spread are averaged, respectively.  When the 283	
  

ensemble spread is at its smallest values, the estimated values suffer from an overshoot, 284	
  

i.e. the parameter error becomes negative. This phenomenon also occurs in Liu et al. 285	
  

(2013) when the similar observation coverage is applied, i.e. U, V and T for the 286	
  

atmosphere and SST and SSS for the ocean. The reason for the overshoot will be 287	
  

discussed in a future study.  288	
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 The positive correlation between the parameter uncertainty and parameter 289	
  

RMSE, however, is disrupted significantly when the regular observation (“truth” plus 290	
  

noise) is used as in EXP-1b. Now, the spatial pattern of the parameter ensemble spread 291	
  

(Fig.2d) remains similar to that in EXP-1a (Fig.2b), but the pattern of the SPD 292	
  

uncertainty (Fig.2c) become very noisy. This occurs because the parameter updating 293	
  

using EnKF also introduces observational errors into the SPD posterior, which is 294	
  

equivalent to adding random noise onto the parameter posterior of EXP-1a. This noise 295	
  

leads to a decrease of the consistence between the SPD uncertainty and its ensemble 296	
  

spread. The distortion on the correlation is seen clearly in the scatter plot Fig3c, where 297	
  

the error value of SPD and its ensemble spread of EXP-1b shows a very weak linear 298	
  

relationship with a much-enhanced residual variance. Nevertheless, this correlation is still 299	
  

significant at the 99% level. Furthermore, since the uncertainty associated with the 300	
  

observation errors is spatially independent, it can be reduced dramatically using a spatial 301	
  

average.  Indeed, the averaging values of SPD are very similar for EXP-1a and EXP-1b 302	
  

(Figs.3b vs. d), although the estimated values of SPD are much more noisy in EXP-1b 303	
  

than in EXP-1a. 304	
  

  Overall, the consistency between the parameter uncertainty and its ensemble 305	
  

spread indicates that the parameter ensemble spread can be used as a good index for the 306	
  

uncertainty of the parameter value and therefore can be used as the criteria for selecting 307	
  

“good” posteriors for averaging.  A spatial average of those “good” posteriors tends to 308	
  

give a better final estimation. 309	
  

(b) Comparison between SA and ASA 310	
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As discussed regarding EXP-1a, 1b, and in the appendix, the uncertainty of the 311	
  

parameter posterior can be reduced using spatial average. The ASA and SA are applied in 312	
  

EXP-2a and EXP-2b, respectively. A predefined minimum ensemble spread value of 0.3-313	
  

m for the CCI is applied in the EXP-2 (s). Unlike the GPO experiments above, now, the 314	
  

error of SPD is reduced dramatically in both EXP-2a and EXP-2b even only with 315	
  

monthly mean SST and SSS observations (Fig. 4a), implying an increased robustness of 316	
  

parameter estimation using spatial average. 317	
  

Based on the ensemble sensitivity shown in Fig.1, we apply the ASA every 6 318	
  

analysis cycles (6 months) in EXP-2a with an initial threshold of 0.68. To prevent the 319	
  

degeneration case of too few “good” values, the threshold increases by 0.1 until it reaches 320	
  

0.98 whenever the total number of “good” values is smaller than a given number, here set 321	
  

as 400. The ASA picks different grids at different times for averaging. The number of 322	
  

grid points of “good” values also varies temporally in the range of 400~4000, which is 323	
  

around 2~40% of total ocean grids (Fig 4b). The ensemble spread of SPD initially 324	
  

decreases much faster than its real uncertainty (Fig4a), reaching the minimum parameter 325	
  

ensemble spread of 0.3-m in 5 simulation years. Although this ensemble spread (0.3) is 326	
  

smaller than the real error in years of 5-20, the SPD continues to converge to its “truth”. 327	
  

The SPD error in EXP-2a is decreased from 3-m to 0.3-m (the estimating goal) in 20 328	
  

years (Fig 4a).  329	
  

 During the assimilation cycle, the ensemble spread still remains positively 330	
  

correlated with the estimation errors among different points, albeit with a substantial 331	
  

spread (as discussed for Exp.1b in Fig.3b). This can be seen in the two examples of 332	
  

scatter plots of SPD after the first and fifth spatial updating cycles in Fig.5a and 5b, 333	
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respectively.  The ASA produces a good SPD estimation by averaging only a moderate 334	
  

number of  “good” values (200-2000) once the threshold (the uncertainty ratios between 335	
  

the posterior and prior) is selected appropriately. This can be seen in Figs.5c and Fig.5d, 336	
  

which shows the number of “good” values and the average of these “good” values 337	
  

respectively, as functions of the threshold in ASA for the first 5 assimilation cycles. For 338	
  

example, for the 1st cycle, the average of SPD is 18.5 with the threshold of 0.8 and the 339	
  

number of “good” value of ~400; and the average of value is 17.6 with the threshold of 340	
  

0.65 and the number of “good” value of ~1000. If the threshold is too small, too few 341	
  

values are defined as “good” values. This will lead to a too small sample size and large 342	
  

sampling error, such that ASA no longer produces good results (Fig. 5b & d).  343	
  

The final estimation also depends on the minimum ensemble spread specified in 344	
  

CCI. The error of the estimated SPD seems to saturate at the equilibrium level of ~0.2-m 345	
  

error in ~30 years in EXP-2a if the minimum parameter ensemble spread remains at 0.3-346	
  

m. This minimum ensemble spread can be decreased afterwards to yield more accurate 347	
  

estimation.  The ASA estimation is repeated from year 31 to year 47 but now with the 348	
  

minimum parameter ensemble spread reduced from 0.3-m to 0.2-m; now the SPD error 349	
  

further decreases from 0.2-m to ~0.1-m (Fig. 4a,green lines). ). In this case, a reduced 350	
  

minimum ensemble spread further improves the final convergence of the parameter 351	
  

estimation.  352	
  

In comparison with the ASA (in EXP-2a), the spatial average using all the grid 353	
  

points in SA (EXP-2b) shows a considerably slower convergence in the SPD estimation, 354	
  

with the SPD error barely reaching 0.3-m after 47-years of assimilation (red lines, Fig 4a).  355	
  

Similar to the ASA, the ensemble spread of SPD in SA also decreases much faster than 356	
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its real error scale. The CCI with the minimum parameter ensemble spread of 0.3 357	
  

prevents the filter divergence of the parameter estimation. In the mean time, the evolution 358	
  

of estimation SPD in SA is more stable than in ASA because more grids and in turn a 359	
  

bigger sample size in the former than the latter   [also see eqn. (A14) in appendix]. 360	
  

Overall, ASA demonstrates a faster convergence rate than SA for SPD estimation 361	
  

because the former uses only  “good” values for averaging.  362	
  

5. Summary and Discussions 363	
  

Refining the Spatial Average scheme (SA), we proposed the Adaptive Spatial 364	
  

Average scheme (ASA) to improve the efficiency of the parameter estimation in a 365	
  

complex system, such as a CGCM.  The ASA is explored in the twin experiment 366	
  

framework in FOAM, where the biased parameter (SPD) is the only model error source. 367	
  

The e-folding scale of the solar penetrating depth is used as the biased parameter for 368	
  

estimation. Sensitivity experiments show that the response of the FOAM to the parameter 369	
  

uncertainty varies spatially and temporally. The ASA is demonstrated to increases the 370	
  

efficiency of parameter estimation significantly over previous assimilation techniques 371	
  

such as the SA (Aksoy et al., 2006a) and geographic dependent parameter optimization 372	
  

(GPO) (Wu et al, 2012a).   373	
  

The ASA uses the posterior ensemble spread as the criterion to select the “good” 374	
  

values from the spatial updating posterior parameter values and only use the “good” 375	
  

values for the averaging to yield the globally uniform posterior.  In comparison with the 376	
  

SA scheme, the ASA produces a faster convergence for parameter estimation. The faster 377	
  

convergence of ASA than SA is robust in other settings, as seen in two additional pairs of 378	
  

experiments the same as EXP-2a & b, except for the observational interval of 10 days 379	
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(EXP-3a & b) and 1 day (EXP-4a & b), respectively (Table 1). When the observational 380	
  

interval is shortened, the model response to the parameter uncertainty becomes more 381	
  

linear. However, the response amplitude still varies spatially and temporally (not shown). 382	
  

Therefore, ASA is still more suitable than SA. Similar to EXP-2, both EXP-3 and EXP-4 383	
  

show faster decreases of the SPD ensemble spread than its real uncertainty in the initial 384	
  

stage. The convergence time is also shortened for a shorter observational interval.  In 385	
  

ASA, the SPD errors reach the objective uncertainty (0.3-m) in ~10 years (EXP-3a, 386	
  

Fig.6a) and ~5 years (EXP-4a, Fig.6b) of simulations, for the observational interval of 10 387	
  

and 1 days, respectively, while, in SA, they take ~30 years  (EXP-3b, Fig.6a) and ~10 388	
  

years (EXP-4b, Fig.6b).  It is noted that the estimated SPD in EXP-4 (Fig.6b) is less 389	
  

stable than that in EXP-2 or EXP-3 (Fig.3a, Fig.6a). The observational interval in EXP-4 390	
  

is only 1 day, while the decorrelation time scale of SST is a few months. This results in 391	
  

the accumulation of sampling error because the model SST does not have the time to 392	
  

respond before another observation is added. The accumulation of sampling error causes 393	
  

poor parameter estimation compared to the other experiments. Furthermore, the 394	
  

instability of the estimated parameter in Fig.6b could become worse as the total 395	
  

assimilation time increases. We could increase the assimilation time interval for 396	
  

parameter estimation to reduce the instability of parameter estimation. 397	
  

The ASA is designed to deal with the spatially and temporally varying feature of 398	
  

model response to parameter in CGCM. As pointed out by one reviewer, for SPD, SST 399	
  

shows little sensitivity to the parameter perturbation in about half of the world ocean 400	
  

(Figs.1a-d). One may speculate that our experiments for the estimation of SPD are too 401	
  

peculiar. The SA is inferior to ASA because the posteriors in these regions of little 402	
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sensitivity are subject to too large a noise (with little response signal) and therefore 403	
  

contaminate the SA estimation seriously. To clarify this, it will be desirable to test the 404	
  

estimation for a parameter that has a more spatially uniform response sensitivity. 405	
  

Therefore, we repeated the estimation for two other parameters 𝑚! and 𝑚! (also see Liu 406	
  

et al., 2014). The  𝑚! and 𝑚! are artificial multipliers to the momentum and latent heat 407	
  

fluxes between the ocean and atmosphere, respectively, with 1 as the default truth model 408	
  

value. The model SST sensitivity to either parameter is more uniform than for SPD (not 409	
  

shown). Our experiments EXP-5a and b and EXP-6a and b use the same experimental 410	
  

setting as EXP-2a and b except for estimating the imperfect parameter 𝑚!  and 𝑚! , 411	
  

respectively (Table1, Fig.7). Both EXP-5a and EXP-6a show faster decreases of the 412	
  

parameter errors than EXP-5b and EXP-6b. The  𝑚! reaches the objective uncertainty of 413	
  

0.04 (set by the minimum ensemble spread specified in CCI) in ~10 years with ASA but 414	
  

in more than 30 years of assimilation with SA (Fig.7a). Similarly, the  𝑚! reaches the 415	
  

objective uncertainty of 0.04 in ~25 years with ASA  but in more than 40 years of 416	
  

assimilation with SA (Fig.7b). Therefore, the improvement of ASA over SA is valid for 417	
  

more general cases than the SPD.  418	
  

The ASA has also been shown successful for the estimation of multiple 419	
  

parameters (Liu et al., 2014). Therefore, we believe that the ASA method is well suited 420	
  

for the estimation of those parameters with a globally uniform feature in CGCM. The 421	
  

estimation of a spatially varying parameter in CGCM, however, remains to be further 422	
  

studied.  423	
  

Much further work remains. All of our experiments of parameter estimation in 424	
  

this study were implemented in a twin experiment framework, where the sampling error 425	
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is one of the major error sources for parameter estimation.  The parameter estimation 426	
  

using the real observational data will be much more complex than that. Aside from the 427	
  

parameter uncertainties, the model bias can be generated in a CGCM due to model 428	
  

structural errors, such as the imperfect dynamical framework and the incomplete 429	
  

understanding for physical processes. It remains a great challenge to identify the sources 430	
  

of the model bias from the candidates of the model structural deficiencies, as well as the 431	
  

large number of model parameters. Hu et al (2010), in their real-data parameter 432	
  

estimation study, pointed out that the parameter estimation using real observations might 433	
  

produce the right answer for the wrong reasons. Furthermore, the uncertainty generated 434	
  

by the model structural errors cannot be included in a single model ensemble forecast. 435	
  

Therefore, the background uncertainty estimated from the ensemble perturbations usually 436	
  

suffers a negative deficiency when we apply parameter estimation using real 437	
  

observations. A negatively biased background uncertainty could cause poor filter 438	
  

performance or even filter divergence, and therefore cause parameter estimation failure. 439	
  

One has to tune the inflation factor to compromise the uncertainty deficiency using a 440	
  

state-of-the-art inflation schemes, such as the covariance inflation/relaxation (Zhang et 441	
  

al., 2004), the additive inflation (Hamill and Whitaker, 2005), or the adaptive covariance 442	
  

inflation (Anderson, 2007, 2009).  443	
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Appendix: Preliminary Theoretical Consideration for ASA   455	
  

Here, we will discuss the SA and ASA from a more quantitative perspective. 456	
  

When we implement the spatial updating in ensemble-based parameter estimation, we 457	
  

obtain a spatially varying parameter posterior field. The posterior errors at different 458	
  

locations are correlated because the parameter priors are identical for the entire field. To 459	
  

quantify the effect of spatial averaging, we can separate the posterior errors into two 460	
  

independent components: one linearly dependent on the parameter prior error and the 461	
  

other uncorrelated with the first one.  462	
  

In EnKF, the covariance(s) between the parameter and the model forecasts in 463	
  

observational space are used directly to update parameter in exactly the same manner as 464	
  

for the state variables. When we use a forecast x! and an observation x! to update a 465	
  

parameter β, the (σ!!)! of a parameter posterior can be written as  466	
  

(σ!!)! = σ!!(1− θ)   (A1) 467	
  

where θ = !!!!!

  (!!!!!)
 with 0 ≤ θ < 1. Here the σ!!,𝑅 are the error scales (variances) of x! 468	
  

and x!, respectively; ρ is the correlation coefficient between forecast x! and parameter 469	
  

prior.  The uncertainty of parameter posterior decreases with the increase of θ. The ratio 470	
  

between parameter posterior uncertainty and prior uncertainty 471	
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(!!
!)!
!!
! ≡ r = 1− θ.  472	
  

In EnKF, (σ!!)! and σ!!  are represented by the variance of parameter posterior and prior 473	
  

ensemble, respectively. So the r is the ratio between the posterior and the prior ensemble 474	
  

spread. For a spatial updating, different location has different r. The ASA uses the r as 475	
  

index to select the “good” values from a posterior field.  476	
  

  The parameter posterior error of ε!!  originates from different sources: x!, x! and 477	
  

β!, and can be written into two parts based on the correlation relationships among the 478	
  

error sources 479	
  

ε!! = σ!N!! (1− θ)+ σ! θ− θ!N!!     (A2)   480	
  

where N!
!and N!! are independent white noise with the scale of 1.  The two terms on the 481	
  

right hand side of (A2) represent two independent components of the total uncertainty 482	
  

(error) of a posterior value for any given σ! and θ. The 1st term linearly depends on the 483	
  

error of parameter prior of (σ!N!! ), while the 2nd term is uncorrelated with the error of 484	
  

parameter prior. The 2nd term is produced by the errors from observations, initial 485	
  

conditions and the nonlinear part of model response to the parameter prior. The 1st term is 486	
  

dominant when θ is close to 0 and the uncertainty of posterior is close to the uncertainty 487	
  

of parameter prior. The second term become primary when θ is close to 1 and the 488	
  

uncertainty of posterior is much smaller than the uncertainty of parameter prior (Fig. 8). 489	
  

 For a spatial updating, we can rewrite (A2) into a spatially varying field 490	
  

ε!,!! = σ!N!! 1− θ! + σ! θ! − θ!!N!,!!     (A3)     491	
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where i = 1, 2… ,N indicate the  locations. The first term on the right hand side is all 492	
  

linearly dependent among different locations, while the second term on the right hand 493	
  

side can be regard as independent among different locations when the posterior values are 494	
  

widely distributed over a large domain. For a spatial average, the two terms have opposite 495	
  

changes. Averaging the β!! to obtain a single-value parameter, the posterior error is 496	
  

  ε!,!! = !!
!

N!! 1− θ!! + !!
!

θ! − θ!!N!,!!!    (A4) 497	
  

We now discuss the two terms on the right hand side of (A4) one by one, 498	
  

regarding the difference between SA and ASA. The first term is linearly dependent on the 499	
  

parameter prior error (N!! ), therefore its scale mainly affect by the distribution of θ! but 500	
  

not the averaging sample size of M.   The first term can be discussed conveniently by 501	
  

assuming a uniform distribution  [θ!"# θ!"#] for θ!. The SA scheme (Aksoy et al 502	
  

2006a) averages all posterior values over the entire domain. This term becomes 503	
  

σ!(1−
!!"#!!!"#

!
)N!! . The ASA sets a threshold θ!" (θ!"# ≤ θ!" ≤ θ!"#) to remove the 504	
  

values with θ! < θ!"  from the average pool such that this term becomes   σ!(1−505	
  

!!"!!!"#
!

)N!! , which is smaller than that using the SA scheme when the difference 506	
  

between θ!"#  and θ!"#  is large and θ!"  is significantly greater than θ!"# . When 507	
  

θ!" =   θ!"#, the ASA recovers to the SA.  When θ!" =   θ!"#, the ASA just picks the 508	
  

posterior value with the “best” posterior, i.e. the minimum analysis error. 509	
  

The second term on the right hand side of  (A4) decreases with the increase of the 510	
  

average sample size of M because the N!,!!   are independent among different sites. 511	
  

Therefore the second term in ASA is larger than that in SA because ASA uses a smaller 512	
  

M than SA. However, when the number of average values (M) is sufficiently large, the 513	
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second term for both SA and ASA is smaller than the first term (unless the θ!(s) are all 514	
  

close to 1), and therefore has limited impact on the total error. When the θ!(s) are all 515	
  

close to 1, the first term is trivial comparing with the second term before average (see  516	
  

(A2) and Fig.8); but this rarely happens for parameter estimation with EnKF in a 517	
  

complex system like CGCM, because it would require ρ! ≈ 1,σ!! ≫ R.  The θ!"#  is 518	
  

usually close to 0, especially when the parameter is nearly converging. 519	
  

The ASA can reduce the error related to the parameter prior error in spite of a 520	
  

reduced the averaging sample size, because “good” posteriors are used which have 521	
  

sufficiently large θ!. The ASA produces better analysis of β than SA when the θ!" (θ!"#) 522	
  

is significantly larger than the θ!"#  when they average the same posterior field. In 523	
  

summary, the SA reduces the errors related to the observations and forecasts. These 524	
  

errors are uncorrelated between different locations. The ASA scheme enhances the signal 525	
  

during the averaging by filtering out the region with weak signal or no signal. Therefore 526	
  

the ASA can produce a faster convergence than the SA (see Fig.4a, Fig.6 and Fig.7).  527	
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Figure Caption 657	
  

Fig. 1. The model monthly SST response to 3-m SPD uncertainty at different month 658	
  

for (a) March, (b) June, (c)  September and (d)  December.  The shading represents the 659	
  

correlation coefficient between the SPD ensemble and the 1st month monthly SST 660	
  

response while the contours represent the magnitude of the monthly SST response 661	
  

(ensemble spread). A 30-member ensemble simulation that starts from the same initial 662	
  

condition but use different values of the parameter SPD. The SPD ensemble is 663	
  

constructed as a Gaussian distribution with the mean of 20-m and the standard deviation 664	
  

of 3-m. We integrate the model from the beginning of each month to the end of the month 665	
  

to obtain the monthly mean response. 666	
  

Fig. 2. Solar penetration depths estimated using DAEPC with the GPO method. The 667	
  

total ensemble size is 30. Panel (a) and (c) are the spatial distribution of parameter error 668	
  

values and parameter ensemble spreads after 20 years simulation for the perfect 669	
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observation experiment. Panel (b) and (d) are the parameter errors and parameter 670	
  

ensemble spreads after 20 years simulation for regular observation experiments.  671	
  

Fig. 3. The estimated SPD after 40-year simulations using DAEPC with the GPO 672	
  

method. Panels (a) and (b) are for EXP-1a using perfect observations:  (a) the scatter 673	
  

diagram between SPD error values and its ensemble spreads. The red line is the 674	
  

regression line. (b) The blue line is the averaging value of SPD using top percent grids 675	
  

(with smallest ensemble spread) and the red dish lines represent 1-standard deviation of 676	
  

the averaging values. The black dish line is the “truth”. 677	
  

Panels (c) and (d) are the same as (a) and (b) but for EXP-1b using regular observations. 678	
  

Fig. 4. The Estimated SPD using DAEPC with the ASA (EXP-2a) and SA (EXP-679	
  

2b). (a)Temporal evolution of parameter error (thick lines) and 1-standard deviation of 680	
  

ensemble spread (thin lines). The red lines are for EXP-2b and the blue lines are for EXP-681	
  

2a the green lines are also for EXP-2a but with a reduced minimum parameter ensemble 682	
  

spread of 0.2 for the year 31~47.  The black solid line is the “truth” and the black dish 683	
  

lines are the minimum parameter ensemble spreads (uncertainty goals) for the 684	
  

experiments. (b) temporal evolution of total numbers of grids used for average in ASA. 685	
  

Fig. 5.  (a) the scatter diagram between SPD error values and its ensemble spreads 686	
  

for EXP-2a after the 1st analysis cycle of parameter updating. The red line is the 687	
  

regression; (b) is the same as  (a) but for after the 5th analysis cycle. (c) the numbers of 688	
  

“good” grids (values) for the 1-5 analysis cycles of EXP-2a using ASA with different 689	
  

threshold. The blue line is for the 1st analysis cycle, the green line is for the 2nd,  the red 690	
  

line is for 3rd, the cyan line is for 4th and the magenta is for 5th. 691	
  

(d) the mean SPD values of the “good” grids from (c) respectively. 692	
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Fig. 6. (a) the temporal evolution of SPD (thick lines) and 1-standard deviation of 693	
  

ensemble spread (thin lines) for EXP-3. The red lines are for EXP-3b and the blue lines 694	
  

are for EXP-3a. The black solid line is the “truth” and the black dish lines are the 695	
  

minimum parameter ensemble spreads (uncertainty goals) for the experiments. 696	
  

(b) is same as (a) but for EXP-4. 697	
  

Fig. 7. (a) the temporal evolution of 𝑚! (thick lines) and 1-standard deviation of 698	
  

ensemble spread (thin lines) for EXP-5. The red lines are for EXP-5b and the blue lines 699	
  

are for EXP-5a. The black solid line is the “truth” and the black dish lines are the 700	
  

minimum parameter ensemble spreads (uncertainty goals) for the experiments. 701	
  

(b) is same as (a) but for the temporal evolution of  𝑚! for EXP-6. 702	
  

Fig. 8. The scale (variance) of each term in equation (A12). The blue cure is for 703	
  

the scale of the 1st (σ!N!! 1− θ ) at the right hand of equation, which is related to the 704	
  

error of parameter prior; the green curve is the scale of the 2nd term (σ! θ− θ!N!!) at the 705	
  

right hand of equation, which is related to the uncertainties of observation and forecast 706	
  

but unrelated to the parameter uncertainty. The black curve is the scale of the total error 707	
  

(ε!!). 708	
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 716	
  

 717	
  

 718	
  

 719	
  

Table 1 the experiment setting. The oceanic observations are SST and SSS; and 720	
  

atmospheric observations are T, U and V. EXP-1a uses the perfect observations (truth).  721	
  

EXP-5 a & b estimate the parameter of  𝑚! and  EXP-6 a & b estimate the parameter of   722	
  

𝑚!. 723	
  

EXP Method Obs.  (Ocn.; Atm.) Parameter (Truth) Initial guess/Truth/ uncertainty  

1a &b GPO 1 month; 1 day SPD 18m/17m/1m for SPD  

2a ASA 1 month; N/A  N/A 20m/17m/3m for SPD 

2b SA 1 month; N/A N/A 20m/17m/3m for SPD 

3a ASA 10 days; N/A N/A 20m/17m/3m for SPD 

3b SA 10 days; N/A N/A 20m/17m/3m for SPD 

4a ASA 1 day; N/A N/A 20m/17m/3m for SPD 

4b SA 1 day; N/A N/A 20m/17m/3m for SPD 

5a ASA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

5b SA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

6a ASA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

6b SA 1 month N/A 1.2/1.0/0.2 for 𝑚! 
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 726	
  
 727	
  
 728	
  
Fig. 1. The model monthly SST response to 3-m SPD uncertainty at different month for 729	
  

(a) March, (b) June, (c) September and (d) December.  The shading represents the 730	
  

correlation coefficient between the SPD ensemble and the 1st month monthly SST 731	
  

response while the contours represent the magnitude of the monthly SST response 732	
  

(ensemble spread). A 30-member ensemble simulation that starts from the same initial 733	
  

condition but use different values of the parameter SPD. The SPD ensemble is 734	
  

constructed as a Gaussian distribution with the mean of 20-m and the standard deviation 735	
  

of 3-m. We integrate the model from the beginning of each month to the end of the month 736	
  

to obtain the monthly mean response. 737	
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 744	
  
 745	
  
Fig. 2. Solar penetration depths estimated using DAEPC with the GPO method. The total 746	
  

ensemble size is 30. Panel (a) and (c) are the spatial distribution of parameter error values 747	
  

and parameter ensemble spreads after 20 years simulation for the perfect observation 748	
  

experiment. Panel (b) and (d) are the parameter error values and parameter ensemble 749	
  

spreads after 20 years simulation for regular observation experiments.  750	
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 769	
  
Fig. 3. The estimated SPD after 40-year simulations using DAEPC with the GPO method. 770	
  

Panels (a) and (b) are for EXP-1a using perfect observations:  (a) the scatter diagram 771	
  

between SPD error values and ensemble spreads. The red line is the regression line. (b) 772	
  

The blue line is the averaging value of SPD using top percent grids (with smallest 773	
  

ensemble spread) and the red dish lines represent 1-standard deviation of the averaging 774	
  

values. The black dish line is the “truth”. 775	
  

Panels (c) and (d) are the same as (a) and (b) but for EXP-1b using regular observations. 776	
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  782	
  
 783	
  
 784	
  
Fig. 4. The Estimated SPD using DAEPC with the ASA (EXP-2a) and SA (EXP-2b).  785	
  

(a)Temporal evolution of parameter error (thick lines) and 1-standard deviation of 786	
  

ensemble spread (thin lines). The red lines are for EXP-2b and the blue lines are for EXP-787	
  

2a the green lines are also for EXP-2a but with a reduced minimum parameter ensemble 788	
  

spread of 0.2 for the year 31~47.  The black solid line is the “truth” and the black dish 789	
  

lines are the minimum parameter ensemble spreads (uncertainty goals) for the 790	
  

experiments. (b) temporal evolution of total numbers of grids used for average in ASA. 791	
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   794	
  

Fig. 5.  (a) the scatter diagram between SPD error values and its ensemble spreads for 795	
  

EXP-2a after the 1st analysis cycle of parameter updating. The red line is the regression 796	
  

line. (b) is the same as  (a) but for after the 5th analysis cycle. 797	
  

(c) the numbers of “good” grids (values) for the 1-5 analysis cycles of EXP-2a using 798	
  

ASA with different threshold. The blue line is for the 1st analysis cycle, the green line is  799	
  

for the 2nd,  the red line is for 3rd, the cyan line is for 4th and the magenta is for 5th. 800	
  

(d) the mean SPD values of the “good” grids from (c) respectively. 801	
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 808	
  
Fig. 6. (a) the temporal evolution of SPD (thick lines) and 1-standard deviation of 809	
  

ensemble spread (thin lines) for EXP-3. The red lines are for EXP-3b and the blue lines 810	
  

are for EXP-3a. The black solid line is the “truth” and the black dish lines are the 811	
  

minimum parameter ensemble spreads (uncertainty goals) for the experiments. 812	
  

(b) is same as (a) but for EXP-4. 813	
  

0 5 10 15 20 25 30 35 40

16.8

17

17.2

17.4

17.6

17.8

18
SP

D

(a)SPD (10 day)

 

 

SA
ASA

0 2 4 6 8 10 12 14

16.8

17

17.2

17.4

17.6

17.8

18

assim yr

SP
D

(b)SPD (1 day)

 

 



	
   39	
  

 814	
  

Fig. 7. (a) the temporal evolution of 𝑚! (thick lines) and 1-standard deviation of 815	
  

ensemble spread (thin lines) for EXP-5. The red lines are for EXP-5b and the blue lines 816	
  

are for EXP-5a. The black solid line is the “truth” and the black dish lines are the 817	
  

minimum parameter ensemble spreads (uncertainty goals) for the experiments. 818	
  

(b) is same as (a) but for the temporal evolution of  𝑚! for EXP-6. 819	
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 821	
  

Fig. 8. The scale (variance) of each term in equation (A2). The blue curve represents the 822	
  

scale of the 1st (σ!N!! 1− θ ) at the right hand side of the equation, which is related to 823	
  

the error of the parameter prior; the green curve represents the scale of the 2nd term 824	
  

(σ! θ− θ!N!!) at the right hand side of equation, which is related to the uncertainties of 825	
  

the observation and forecast, but unrelated to the parameter uncertainty. The black curve 826	
  

is the scale of the total error (ε!!). 827	
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